首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17620篇
  免费   3987篇
  国内免费   7263篇
化学   13424篇
晶体学   995篇
力学   1307篇
综合类   880篇
数学   3035篇
物理学   9229篇
  2024年   23篇
  2023年   140篇
  2022年   606篇
  2021年   580篇
  2020年   573篇
  2019年   531篇
  2018年   518篇
  2017年   787篇
  2016年   566篇
  2015年   904篇
  2014年   1016篇
  2013年   1424篇
  2012年   1399篇
  2011年   1525篇
  2010年   1520篇
  2009年   1690篇
  2008年   1983篇
  2007年   1712篇
  2006年   1689篇
  2005年   1444篇
  2004年   1176篇
  2003年   882篇
  2002年   820篇
  2001年   898篇
  2000年   974篇
  1999年   604篇
  1998年   313篇
  1997年   248篇
  1996年   281篇
  1995年   250篇
  1994年   227篇
  1993年   219篇
  1992年   184篇
  1991年   143篇
  1990年   148篇
  1989年   150篇
  1988年   127篇
  1987年   103篇
  1986年   80篇
  1985年   50篇
  1984年   76篇
  1983年   72篇
  1982年   60篇
  1981年   47篇
  1980年   35篇
  1979年   28篇
  1978年   13篇
  1977年   5篇
  1976年   6篇
  1959年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
氮化镓(GaN)具有高击穿场强、高饱和电子漂移速率、抗辐射能力强和良好的化学稳定性等优良特性,是制作宽波谱、高功率、高效率光电子、电力电子和微电子的理想衬底材料.除气相法(包括HVPE(氢化物气相外延)、MOCVD(金属有机化合物化学气相沉淀)、MBE(分子束外延))生长GaN单晶外,液相法(包括氨热法和助熔剂法)近几年在制备GaN单晶方面取得了较大的进展.本文介绍了氨热法和助熔剂法的生长原理、装备特点及生长习性;综述了两种液相生长方法的研究历程及研究进展,并对液相法生长GaN单晶的发展趋势及主要挑战进行了展望.  相似文献   
72.
GaAs单晶作为一种重要的LED衬底材料在光电器件中应用十分广泛,但载流子浓度(C.C.)分布不均、杂质浓度过高等缺陷会严重影响相关器件的性能.为制备纵向载流子浓度分布均匀的掺硅HB-GaAs单晶,本文探讨了单晶生长过程中熔区长度对纵向载流子浓度分布的影响.以高纯GaAs多晶为原料,设定不同的拉晶温度曲线,采用窄熔区技术进行晶体生长研究,最终生长出C.C.值分布更均匀、位错密度低(EPD≤10 000 cm-2)的<111>向N型掺硅GaAs单晶.利用辉光放电质谱法(GDMS)和范德堡法霍尔效应测试对晶体进行了表征,单晶纯度达到5N且无硼杂质沾污.  相似文献   
73.
本文研究如下带有变号势函数的分数阶Schrodinger Kirchhoff方程(a+b∫∫R^N|u(x)-u(y)|^p/|x-y|^N+p^sdxdy)^p-1(-△)p^su+λV(x)|u|^p-2u=f(x,u)-μg(x)|u|^q-2u,x∈R^N.其中s∈(0,1),p∈[2,∞),q∈(l,p),a,b>0,λ,μ>0均为正常数,在V,f,g等函数合适的条件下,运用喷泉定理获得该系统无穷多高能量解的存在性.  相似文献   
74.
在HL-2A装置上完成了一套32通道束发射诊断系统(BES),可对径向r=12~44cm, 极向-7.5~+7.5cm二维空间范围内的长波长()电子密度扰动信息进行测量,其时间分辨率达到0.5ms,空间分辨率1~2cm。系统由内置于真空室的非对称镜头组、传输光纤、高性能探测器模块以及辅助的冷却和真空设备构成。系统的噪声在低频时(f<100kHz)主要由散粒噪声贡献,在较高频率时由散粒噪声和e噪声共同决定。在典型的HL-2A装置放电模式中,对于200kHz以下的扰动,该系统的信噪比(SNR)均大于3。  相似文献   
75.
为实时恢复天文或空间目标的湍流退化成像,提出一种适应大气湍流动态变化的多通道自适应光学图像恢复方法.以自适应光学校正后不同时刻的目标成像作为多个通道,建立求解系统点扩散函数的线性方程,根据解出的点扩散函数利用超拉普拉斯算法,求解待观测目标的估计值.结果表明:不同时刻的点扩散函数之间存在互质关系,满足多通道盲识别的理论要求.利用建立的线性方程求解出的点扩散函数与原点扩散函数的均方误差在10^-30~10^-27量级,采用超拉普拉斯算法恢复出的目标成像与原始目标之间的均方误差在10^-5~10^-4量级.本文研究为湍流退化图像的实时恢复提供了理论基础.  相似文献   
76.
层状稀土氢氧化物是一类新型的稀土功能材料,本文采用固体核磁共振(SSNMR)方法研究了同时具备离子交换能力和非线性光学特性的层状La(OH)2NO3化合物,探讨了通过四极核CPMG(QCPMG)脉冲序列和变频谱图采集获取超宽139La SSNMR谱图的方法,并描述了适用于此类实验的滤波方程和谱图重建方法.重建谱图同时包含四极核中心跃迁和卫星跃迁信息,本文使用QUEST软件对超宽139La NMR谱图进行了模拟,获取的四极耦合常数CQ和非对称因子ηQ均与CASTEP密度泛函理论计算值高度吻合.SSNMR实验结果证实层状La(OH)2NO3化合物属于非中心对称结构(P21),解决了对其结构长期以来存在的争论.  相似文献   
77.
设计了一种宽带的基于混合表面等离子体弯曲波导的偏振分束转换器, 使用有限元法计算硅波导、混合表面等离子体波导的模场分布和有效折射率, 为器件建模仿真分析提供了依据. 使用时域有限差分法优化器件结构, 以获得最佳的性能参数. 由于混合表面等离子体波导的双折射增强, 设计获得的偏振分束转换器具有超小尺寸和宽带的工作特性. 仿真结果表明 在1550nm的中心波长处消光比大于23dB, 插入损耗小于0.8dB; 在80nm的带宽上, 横磁偏振光转换为横电偏振光的偏振转换效率大于95%.  相似文献   
78.
介绍了基于STEAM理念下让学生制备和表征四氧化三铁磁流体的化学实验探究。采用化学共沉淀法制备了磁性Fe3O4纳米颗粒。在外加磁场下磁流体能出现明显凸起。本实验简单、安全、现象明显、试剂用量小、适宜于学生独立实验操作。本研究旨在通过设置科学问题,让学生体验整个科研过程,培养学生的创造力。  相似文献   
79.
The author deals with a semi-linear edge-degenerate parabolic equation, and proves that the solution increases exponentially under the initial energy J(u_0) ≤ d, where d is the mountain-pass level. Moreover, the author estimates the blow-up time and the blow-up rate for the solution under J(u_0) 0.  相似文献   
80.
目前,我国乐器制作行业在古筝面板用木材等级的筛选上主要依赖于技师主观评判,但此法缺少科学理论的依据,效率低,客观性及出材率的提高等方面受到限制,无法满足乐器市场的大量需求。实现古筝面板用木材快速、智能化的分级工作是一个急需解决的课题。近红外光谱非常适用于测量含氢的有机物质。古筝面板木材主要化学成分的化学键均由含氢基团组成,不同等级板材的化学成分存在差异,这些差异反映在近红外光谱中,为判断木材等级提供了可能。同时卷积神经网络对非线性数据具有较强的特征提取能力,所以提出一种应用卷积神经网络模型对光谱数据进行分析的方法,进而判别木材的等级。应用了Savitzky Golay一阶、二阶微分两种预处理方法和核主成分分析、连续投影算法两种数据压缩方法,通过所设计的卷积神经网络模型以样本识别准确率和模型构建过程中的损失值作为判定指标选出最佳预处理和数据压缩方法。为了提高模型提取分析光谱数据的能力和避免过拟合现象,应用了多通道卷积核、批量归一化和early stopping策略,将通过两层卷积层提取的特征信息送入全连接层,从而充分提取剩余信息,通过Softmax函数获得板材的最终预测等级,从而确定了最终模型。最终Savitzky Golay一阶微分和核主成分分析为最佳数据处理方法,同时得出用于区分不同等级的古筝面板用木材的主要关键谱带,分别为1 163~1 243, 1 346~1 375和1 525~1 584 nm。将该模型应用于测试集样本,古筝面板用木材的等级识别准确率为95.5%。实验结果表明所提出的方法可以高效地处理光谱数据,有效识别区分不同等级的古筝面板用木材的关键特征,从而为广阔的乐器市场提供一定的技术支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号